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The breaking of a phosphate ester bond is important in many
areas such as the destruction of nerve agents (Sarin and VX),1

pesticides (chloropyrifos),2 and in biological systems.3 In recent
years, methods for the catalytic cleavage of the P-O bond in
phosphate esters have been developed.4 Most of these are binuclear
systems use d-block metals such as cobalt,5 copper,6 and zinc.7

Boron compounds however, have not been examined in this regard,
despite the fact that BBr3 will, through cleavage of the O-C bond,
dealkylate alkyl and aryl ethers (eq 1)8 and silyl ethers.9 This
reagent, however, is ineffective with phosphates since phosphorus
is electron-donating (thereby strengthening the alkyl-oxygen bond).
For example, BBr3 does not de-alkylate trimethyl phosphate (less
than 2% in 24 h). In an effort to determine whether the presence
of a chelate ligand might improve the effectiveness of boron
bromides for this reaction, new binuclear boron compounds Salpen-
(tBu)[BBr2]2 (1) and Salben(tBu)[BBr2]2 (2) have been synthesized.10

These compounds catalytically dealkylate a broad range of phos-
phate esters through cleavage of an O-C bond.

The binuclear boron bromides (1 and 2) are prepared in high
yields by combining Salpen(tBu)[B(OMe)2]2

11 or Salben(tBu)-
[B(OMe)2]2

11 with a stoichiometric amount of BBr3 (eq 2).12 The
11B NMR shows a broad single peak for1 and2 at δ -0.57 and
-0.40 ppm, upfield from the related chloride analogue Salpen-
(tBu)[BCl2]2

13 (6.21 ppm).

In the structure14 of 2 (Figure 1), the boron atoms are in a
distorted tetrahedral geometry and trans to one another. The angle
of the ligand (N-B-O) is 112.8(6)°, which is slightly larger than
other Salen-supported binuclear systems such as Salen(tBu)-
[B(OSiPh3)2]2

15 (angle) 104.9(3)°). The B-Br bond lengths are
2.023(8) and 2.077(9) Å for2, which are slightly longer than those
for other four-coordinate boron dibromide compounds such as [(2-
Me2NCH2)C6H4]BBr2 (with B-Br bond distances of 2.01(1) and
2.02(1) Å).16

Salpen(tBu)[BBr2]2 cleaves an O-C bond in a multitude of
phosphate esters (Table 1).17 When combined with stoichiometric
amounts of various phosphates,1 produces alkyl bromides and
chelated boron phosphates (eq 3). Simple and sterically encumbered
(P-O-C) linkages that possess primary and secondary sp3

R-carbons are cleaved.
The mechanism appears to be one in which a cationic intermedi-

ate [(chelate)BBr]+ coordinates the phosphate, allowing a nucleo-
philic attack by the bromide at theR-carbon. Such cations appear
readily accessible by the simple addition of a Lewis base.18 The

cation formation also takes place when excess BBr3 is added to
compound1.19

Since Salpen(tBu)[BBr2]2 (1) can be generated in situ from
Salpen(tBu)[B(OMe)2]2 and BBr3, the process can be made catalytic.
The dealkylation of trimethyl phosphate occurs within 5 min
through the addition of catalytic amounts of borate to equimolar
trimethyl phosphate and BBr3 in the trimethyl phosphate to1 ratio
of 20:1.20 Salpen(tBu)[B(OMe)2]2 dealkylates (MeO)3P(O) (75%
conversion) with BBr3 within 30 min at a substrate-to-catalyst ratio
of 200:1. Addition of BBr3 or the borate alone does not effect
dealkylation within 24 h. The boron bromide compounds show
excellent activity toward the dealkylation of different phosphates.
The activity of the boron halide compounds does not decrease with
the extension of the alkyl chain on the phosphates. However, the
activity of the boron halide compounds shows a slight decrease
with the branched phosphates such as (PhO)2((2-Et)HexO)P(O). A

Figure 1. Molecular structure and atom numbering scheme for2. Selected
bond lengths (Å) and angles (deg): B(1)-O(1), 1.418(9); B(1)-N(1),
1.517(9); B(1)-Br(1), 2.023(8); B(1)-Br(2), 2.077(9), O(1)-B(1)-N(1),
112.8(6); O(1)-B(1)-Br(1), 108.6(5); N(1)-B(1)-Br(1), 112.2(5);
Br(1)-B-Br(2), 107.7(3).

Table 1. Percent Dealkylation of Different Phosphates with
Salpen(tBu)[BBr2]2 (1)

phosphate conversion (%)a

(MeO)3P(O) 89
(EtO)3P(O) 63
(nBuO)3P(O) 99
(nPentO)3P(O) 98
(MeO)2P(O)H 85
(MeO)2P(O)Me 99
(iPrO)2P(O)H 63
(PhO)2((2-Et)HexO)P(O) 71
(Me3SiO)3P(O) 98
(PhO)3P(O) 0

a The percent conversion was determined by the amount of phosphate
remaining to the amount of alkyl bromide produced in the1H NMR.

Published on Web 02/09/2002

1864 VOL. 124, NO. 9, 2002 9 J. AM. CHEM. SOC. 10.1021/ja017360m CCC: $22.00 © 2002 American Chemical Society



further positive attribute of this system is that these reactions can
be conducted at room temperature. Unlike the synthetic enzyme
models, the C-O cleavage appears to occur at only one metal site.
For example, preliminary results show that the compound N, -tert-
butyl (salicylideneimine) dealkylates trimethyl phosphate. Thus, this
might be a general reaction for any type of chelate.

The phosphates dealkylated in this report may be viewed as
models for the nerve agent Sarin and the pesticide chloropyrifos
since they have similar P-O-C units. Thus, chelated boron
bromides appear to be promising candidates for the decontamination
of chemical warfare agents such as VX and Sarin gas under organic
conditions. More specifically, they may be more efficient than
conventional decontamination systems that use hydroxide sources.21
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